Exercise 32

Find $f^{\prime}(a)$.

$$
f(t)=2 t^{3}+t
$$

Solution

Determine the derivative of $f(t)$.

$$
\begin{aligned}
f^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[2(t+h)^{3}+(t+h)\right]-\left[2 t^{3}+t\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[2\left(t^{3}+3 t^{2} h+3 t h^{2}+h^{3}\right)+t+h\right]-2 t^{3}-t}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(2 t^{3}+6 t^{2} h+6 t h^{2}+2 h^{3}+t+h\right)-2 t^{3}-t}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 t^{2} h+6 t h^{2}+2 h^{3}+h}{h} \\
& =\lim _{h \rightarrow 0}\left(6 t^{2}+6 t h+2 h^{2}+1\right) \\
& =6 t^{2}+1
\end{aligned}
$$

Plug in $t=a$ to this formula to get $f^{\prime}(a)$.

$$
f^{\prime}(a)=6 a^{2}+1
$$

